Considerations for Embedding Passives and Actives in PCBs

PwrSoC 2014

AT & S Austria Technologie & Systemtechnik Aktiengesellschaft | Fabriksgasse 13 | A-8700 Leoben Tel +43 (0) 3842 200-0 | E-mail info@ats.net

www.ats.net

Agenda

Why embedding?

Embedding flavours

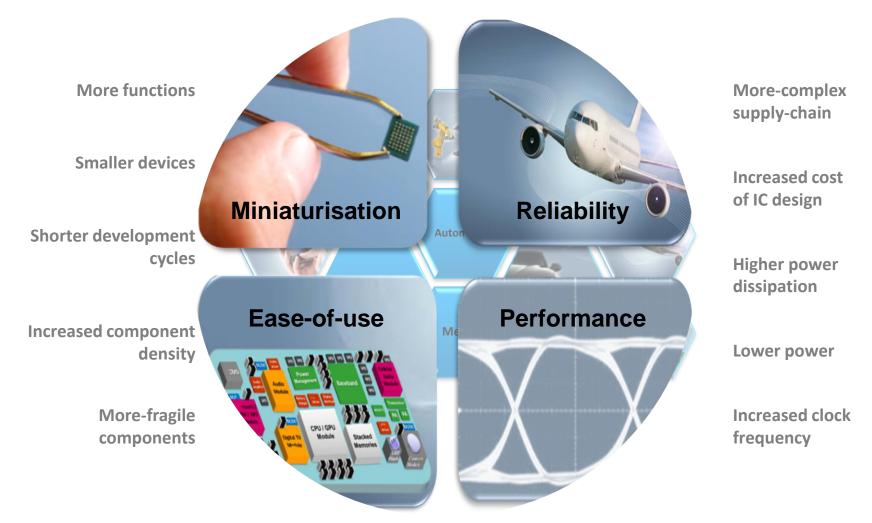
Embedding by AT&S

Reliability comparison

Supply chain

Comparison with QFN

Conclusion


Styles

- Layer embedding
- → Capacitive and/or resistive layers
- Partial embedding
- → Cavities in substrates
- Full embedding
- → Components in substrates
- ➡ Focus on ECP from AT&S

Why are we embedding?

Trends and challenges in electronics

Agenda

Why embedding?

Embedding flavours

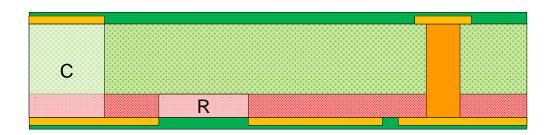
Embedding by AT&S

Reliability comparison

Supply chain

Comparison with QFN

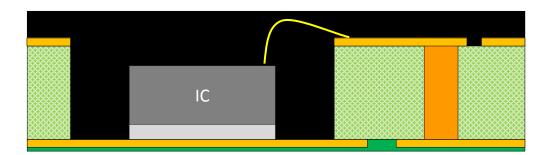
Conclusion



Embedded layer

- Pros
 - High flexibility in number and position of passive functions
 - General compatibility with standard PCB processes

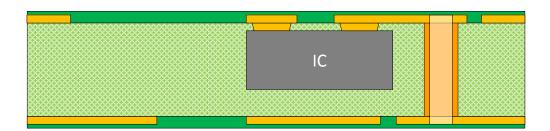
Cons


- Higher material cost than standard PCB
- Limitation to low passive values
- Limitation to passive functions

Embedding flavours

Partial embedding

- Pros
 - Similar price to standard PCB
 - Compatibility with standard components
 - Possibility to improve electrical/thermal performance
- Cons
 - Increased complexity of component placement
 - Loss of integration
 - Limitation to wirebonded actives for low-layer-count PCBs



Full embedding

Pros

- Miniaturisation through 3D integration
- Increased performance through short connections
- Increased performance through heat conduction
- Cons
 - Higher m2 price
 - Limitation to process-compatible components

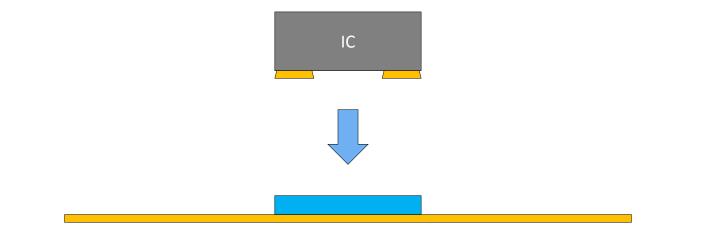
Agenda

Why embedding?

Embedding flavours

Embedding by AT&S

Reliability comparison

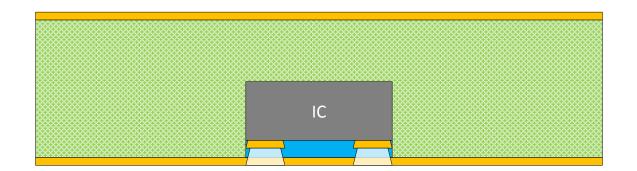

Supply chain

Comparison with QFN

Conclusion

Component placement

Component placement

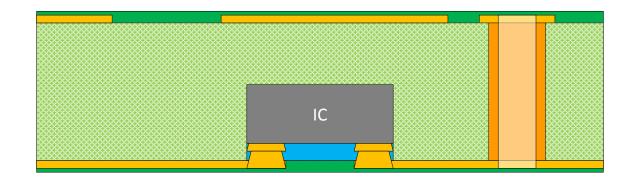

1 ASM X4 equivalent to 80 die placers

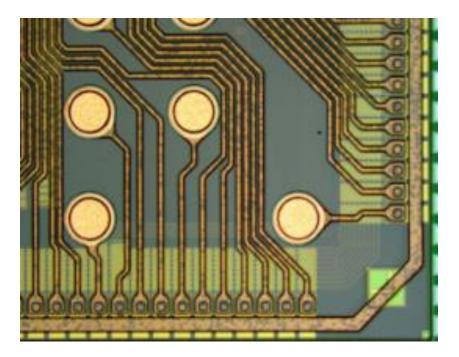
5. COM 5. COM 5. COM 5. COM

PCB and interconnect formation

Interconnect formation

1 laser-drilling station equivalent to 100 wirebonders




Structuring and finish



Requirements

- Cu terminations (minimum 5 mm)
- Components in tape-&-reel
- Nothing else!

Benefits

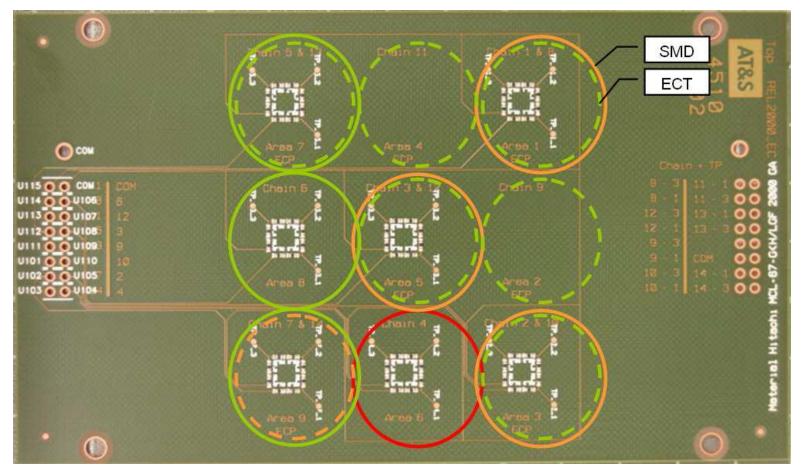
- High integration
- High performance
- Very-high-scale production
- ⇒ Efficient and cost-effective technology

Agenda

Why embedding?

Embedding flavours

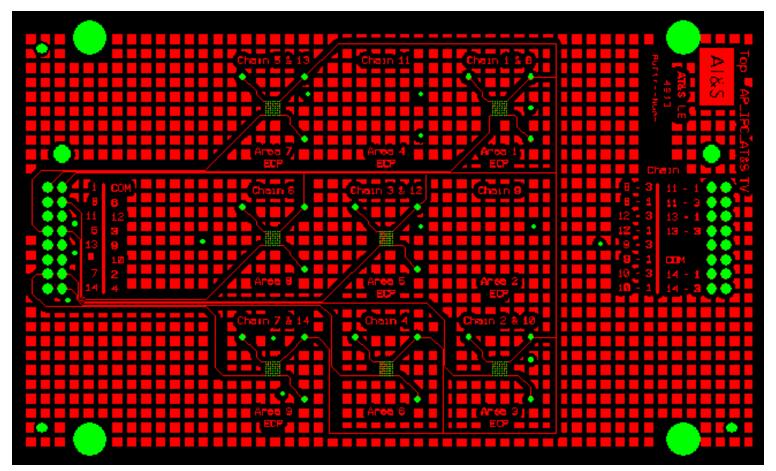
Embedding by AT&S


Reliability comparison

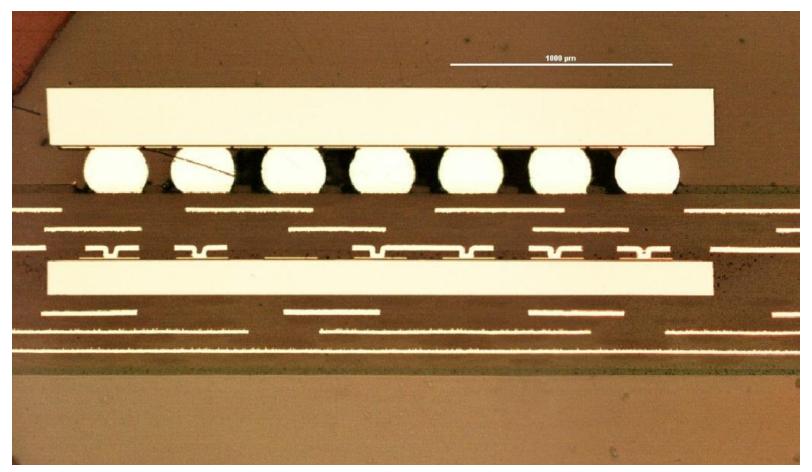
Supply chain

Comparison with QFN

Conclusion


AT&S

- Drop test (JESD22-B111) @ 1500 g
 - SMT components (126 daisy chains)
 - ⇒ First failure @ 304 drops
 - → 100-% failure @ 974 drops
 - ECP components (126 daisy chains)
 - ⇒ First and only failure @ 832 drops
 - → Test end @ 1000 drops



- TCT (JESD22-A104C) @ [-40; +125] degC
 - SMT components (35 daisy chains)
 - → Zero failure @ 1000 cycles
 - ECP components (35 daisy chains)
 - → Zero failure @ 1000 cycles

AT&S

- Drop test (JESD22-B111) @ 1500 g
 - SMT components (70 daisy chains)
 - ⇒ First failure @ 792 drops
 - → 4 failures @ 1000 drops
 - ECP components (70 daisy chains)
 - → Zero failure @ 1000 drops

- TCT (JESD22-A104C) @ [-40; +125] degC
 - SMT components (70 daisy chains)
 - ⇒ First failure @ 684 cycles
 - ⇒ 100-% failure @ 999 cycles
 - ECP components (70 daisy chains)
 - ⇒ Zero failure @ 1000 cycles

- Bend test (JEDEC-9702) @ 2 mm/min (28 mm maximum)
 - SMT components (63 daisy chains)
 - ⇒ First and only failure @ 3.71 s
 - ECP components (63 daisy chains)
 - → Zero failure @ 14 min

Agenda

Why embedding?

Embedding flavours

Embedding by AT&S

Reliability comparison

Supply chain

Comparison with QFN

Conclusion

AT&S

Suppliers

Actives

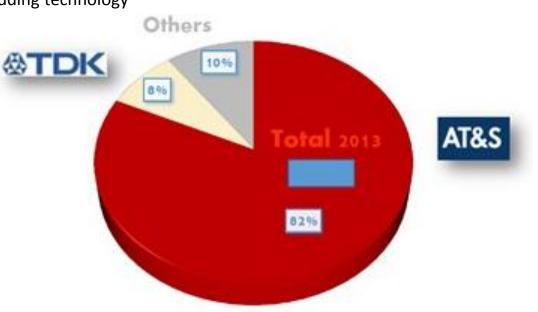
- Cu available from selected foundries
- RDL available from OSATs
- Passives
 - Resistors available from AVX and Murata
 - Capacitors available from KOA and Panasonic

IPDs

- Available from IPDiA , Maxim and STMicroelectronics

Technology complexity (or lack thereof)

- Standard PCB processes
- Standard SMT processes
- Main production facilities in China
- → Very quick capacity extension possible



Integration in packaging flow

- Very-high-yield process
- ⇒ 2L @ 99+ %
- Flexibility of delivery format
- → Any size up to 400*550 mm
- Intermediate-testing relevance
 - If QFN replacement
 - → Only after singulation
 - If SiP
 - → Do you test after every component placement/interconnection?
- → Seamless integration in standard packaging flow

Partnership

- Agreement with TDK-EPCOS
 - TDK-EPCOS as second source for ECP
 - AT&S as second source for SESUB
 - → Limiting customer concerns with regards to technology selection/dissemination
 - Co-development of next-generation embedding technology
- Need to encourage ecosystem
- → Risk of customer distrust (monopoly)

Agenda

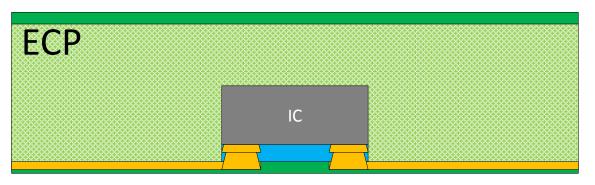
Why embedding?

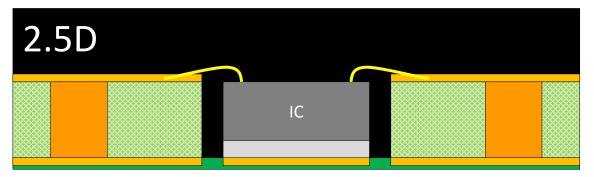
Embedding flavours

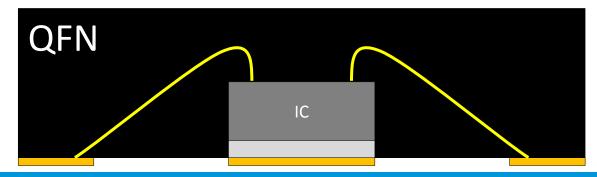
Embedding by AT&S

Reliability comparison

Supply chain


Comparison with QFN


Conclusion


Comparison with QFN

Structure

Characteristics

		ECP	2.5D	QFN
Die size (mm)		2*2		
Package size (mm)		4*4		
Number of I/Os		12		
Die thickness (µm)		150	300	300
Package thickness		300	500	700
Interconnect		Via	WB	WB
Thermal resistance (K/W)	θ_{j-top}	30	94	120
	$\theta_{j-bottom}$	0.7	0.6	0.7
	$\theta_{j-ambient}$	0.7	0.6	0.7
Interconnect inductance (nH)		0.7	0.7	1.0
Cost		+	+	0
Testability		QFN footprint		

Agenda

Why embedding?

Embedding flavours

Embedding by AT&S

Reliability comparison

Supply chain

Comparison with QFN

Conclusion

Conclusion

Embedding

- Different variants depending on requirements
 - Embedded layer
 - Partial embedding
 - Full embedding
- Improved performance for limited to neutral cost increase
 - Size reduction
 - Improved thermal resistance
 - Improved electrical characteristics
- Maturing and reliable technology
- Full supply chain in place with second-source options
- ⇒ What will be the next big application?

Thank you for your attention!

Questions?

AT & S Austria Technologie & Systemtechnik Aktiengesellschaft | Fabriksgasse 13 | A-8700 Leoben Tel +43 (0) 3842 200-0 | E-mail info@ats.net

www.ats.net